
Web based Out-of-Core Volume Visualization in

Client-Server Architectures

Neslisah Torosdagli*, Sumanta Pattanaik

 CS Division, Dept. of EECS, UCF

Orlando, USA

*neslisah@knights.ucf.edu

Curtis Lisle

KnowledgeVis, LLC, Maitland, FL

Yanling Liu

Frederick National Lab for Cancer Research

Frederick, Maryland

Abstract— High quality, interactive volume visualization is

increasingly important as advancements in volumetric capture

devices, increased GPU power, and greater interest from the

biological/medical community are all currently happening.

Researchers and clinicians want to access their data anywhere

using a wide range of devices, from smart phones up to powerful

multicore machines. Web based visualization applications are

increasingly popular now that browsers are supported on nearly

all computing platforms, and the new HTML5 standards enable

graphical interaction without the need for proprietary plugins or

additional APIs. In this paper, we present a novel, browser-

based, out-of-core volume rendering tool that enables interactive

rendering of large volume data on portable devices. The tool uses

a client-server approach, where the rendering task is carried out

on a server, and the interaction and viewing occurs through a

client-system web browser.

Index Terms—Volumetric data visualization, web-technologies,

GPU computation, out of core, client-server application.

I. INTRODUCTION

Many applications in a wide range of domains such as

medicine, biology, physics, and engineering benefit from

visualization of volumetric data at interactive rates. The

performance of GPUs has been increasing rapidly in recent

years and their parallel processing power can now be harnessed

in visualization applications using OpenCL/Cuda or

OpenGL/DirectX APIs [1]. However, volume rendering is still

challenging for larger volumes that exceed the resources

available on the rendering hardware. This is particularly true

for mobile clients. Although there are some large-scale

volumetric visualization tools available such as Vaa3D-

TeraFly[8], none of them fulfill requirements especially for

mobile clients. Hence comes the need for a volume

visualization architecture that can scale in performance by

using server-based computing, yet deliver the volumes to small

or mobile devices.

 In this paper, we present a browser based adaptive out-

of-core volume ray-casting system for interactive visualization

of volumetric big data on devices from smart phones and

tablets to high end workstations. In spite of many attempts by

researchers to develop portable interactive visualization

systems using proprietary or specialized plugins and APIs, the

portability and wide adaptation of those systems has been

limited because the actual software ports to non-native

platforms are not trivial. We have addressed this problem by

making our system web based. Web browsers are supported in

almost all computing platforms. HTML5, the new mark-up

language for web content with native interaction support,

introduction of new elements such as canvas, and integration of

scalable vector graphics (SVG) content, allows us to perform

interactive volume rendering in our web-based system without

having to resort to proprietary plugins. Thus our system is

portable to a wide range of devices and platforms.

To be interactive requires rendering the volume at

interactive rates (generally more than ten frames per second).

The computation cost associated with a volume renderer,

makes it nearly impossible to guarantee interactive frame rates

independent of the computing power of the user’s device. To

address this problem, we have developed a client-server

framework; where the server is responsible for

compute/storage/memory intensive tasks, such as volume

processing and rendering the view. The client is responsible

for interaction, transfer function manipulation and display of

the image frames rendered by the server. The appropriate

choice of the server hardware configuration and a decent

network connectivity will deliver interactive frame-rates. Any

browser-based device, serving as a client, will allow the user to

interact with the volume and interactively view the image

rendered by the server.

To our knowledge, ours is the first web-based, out-of-core

volume visualization system.

II. BACKGROUND

In this section we will provide a quick background to the

algorithms directly relevant to this paper. For a detailed

discussion on volume rendering, we recommend interested

readers to the book [2] and for scalable GPU rendering to the

recent survey articles[3].

A. Front-to-Back Ray Casting Algorithm

Ray casting based volume rendering techniques assume that

the volume is composed of a grid of emitting and absorbing

volume elements (voxels). The ray-casting step accumulates

light from voxels encountered along the path of the ray after

taking into account the volumetric attenuation of light from the

point of origin to front of the volume. The front-to-back ray

casting method has an advantage over back-to-front ray

casting, in that it accumulates opacity (the degree to which

light is not allowed to travel through) along ray and terminates

the accumulation process when the opacity is close to 100% --

thus reducing rendering cost.

The emission and absorption property of the voxel is

assigned using a transfer function. The transfer functions play

an important role in volume rendering and designing them is,

in itself, an entire area of research, which is out of the scope of

this paper. In our work, we have assumed that the transfer

function is interactively assigned by the user.

B. Out-of-core Volume Rendering

Like most ray tracing algorithms, ray casting based volume

rendering is easily parallelizable and makes effective

utilization of the GPU processing capabilities. However, the

available GPU memory (and even CPU memory) is often

inadequate for the size of modern day biological/medical

volumes. Out-of-core techniques have been proposed to handle

this problem. Such techniques often use a standard memory-

paging scheme, in which large volumes are broken into smaller

chunks (called bricks) such that multiple bricks can easily fit

into the GPU memory. The bricks are retrieved and processed

in a view-specific order, for example: starting with the bricks

nearest to the view, followed by the bricks further away in the

view frustum. This technique works best when a small part of

the volume is visible and requires a relatively small number of

brick transfers. However, when the whole volume or a

relatively larger portion of the volume is in the view, the cost

of streaming full-resolution volume bricks can significantly

reduce the frame rate. Level-of-detail based techniques, similar

to mip-map construction in traditional texture are used to

reduce the streaming cost. A hierarchy with progressively

lower resolution bricks is constructed from the original bricks.

Using a top-down traversal technique, the bricks at the

appropriate resolution for their location are identified and

streamed. This scheme significantly reduces the cost of brick

transfers and improves the frame rate. As an added bonus, the

view dependent resolution doubles as a minification filter and

hence improves the rendered image quality by reducing

aliasing. Such out-of-core techniques have been well

researched in the literature. We have followed a technique

similar to [4][5].

C. Client-Server Architecture

Using a client-server based system, the

compute/storage/memory intensive component is executed on a

server equipped with high-performance CPU and/or GPU

hardware. The output is then delivered to one or more client

devices (often less powerful) through a connected network.

The additional effort lies on building a communication layer,

using some existing client-server protocol. We have used a

web-based, thin-client system that handles the image frame

display, interaction with the volume, and the interactive

transfer function creation.

III. OUR SYSTEM

A. Adaptive Out-of-Core Volume Ray Casting

In our adaptive out-of-core volume ray-casting algorithm

the volume dataset is partitioned into an octree hierarchy of

bricks, and as needed, before rendering every frame, a view

dependent candidate set of the bricks from this hierarchy is

computed and transferred to GPU along with an index texture

describing mapping of the available bricks to the GPU

memory.

The volume is first partitioned into bricks. The brick size

is set to be some power of 2-cube (say a cube of size

32×32×32).

Processing of volume data, which includes partitioning of

volume data into the octree hierarchy and pre-computing

gradients, is a time-consuming task and hence is, carried out in

the GPU in a preprocessing step. The results are stored for later

use.

In the preprocessing stage, in addition to volume data and

octree structure, histograms and lookup tables are also

computed and stored. Since an octree inherently requires a

power of 2 cube, processing any rectangular, non power of 2

volume, requires us to create nonexisting (hereto called

"ghost") bricks, that are not physically stored anywhere, but are

required for octree handling. We use a lookup table to keep

track of such ghost bricks. Depending on the data size, the

preprocessing step can be very time consuming. For example:

preprocessing Visible Human Project female dataset takes

around 12 hours to preprocess data on Intel Core i7-4770K-

GeForce GTX 780 with 15.6GB Memory.

In our system, every brick in the octree hierarchy is

assigned a unique id consisting of a two-component tuple

(level#, index), where index is the flattened 3D index of the

brick in the volume. Depending on the system memory

capacity, bricks are stored in physical or virtual CPU memory.

For every new rendered frame (triggered by interactive

viewing and/or transfer function update) we traverse through

the octree hierarchy in top-down order to compute a candidate

brick set (see Fig. 1. a). The resolution of the bricks in the

candidate set are chosen such that the number of voxels on the

face of the brick closely matches with the number of pixels in

the foot-print of the view-dependent projection of the brick

bounding volume on the display window.

Fig. 1. Octree-hierarchy and D3 Interface

Required bricks’ resolutions are identified according to

their locations by traversing octree in breadth-first order. The

a) View Dependent Resolution b) D3 Interface

allocated GPU memory is organized as a cubic volume whose

size is an exact multiple of brick size. Thus each brick in the

candidate set can be assigned a unique location in the GPU

resident volume.

Once the candidate brick set computation is completed, an

index table is created to map voxels encountered at render time

to the appropriate brick in the GPU cubic volume. The size of

the index table is set to be equal to the number of the bricks at

the leaf level. The candidate set is processed one brick at a time

in the order in which they appear, and a tuple, composed of the

octree level of the candidate brick and its location in GPU

memory, is assigned to the cells of the table that correspond to

all the descendant leaf bricks of the candidate brick. The index

table is stored as a two-channel 2D integer texture. Once the

index table construction is completed, view dependent

candidate bricks and the index texture are sent to the GPU, and

the front-to-back ray-casting algorithm is executed.

During the ray traversal in front-to-back ray casting, for

every point along the ray in the volume, its corresponding CPU

brick id is computed, and the index texture pixel for this brick

id is read to find the mapped GPU brick id and its octree

resolution. If the voxel maps to a brick, then the offset for the

voxel data in the corresponding GPU volume memory is

computed, and the voxel’s properties (emission, its opacity and

gradient) are read. If the voxel does not map to any brick,

computation continues to the next voxel until either the ray

exits the bounding volume or early ray termination occurs.

Early ray termination is applied when opacity of the voxel

reaches 95 percent or above.

All server side implementations are carried out in C++

using the Boost library. To speed-up brick lookup, the octree

of image bricks is stored in a memory-mapped file. GPU

programming for octree construction and gradient computation

is carried out using OpenCL. If the server is running locally

then OpenGL implementation of volume ray casting is used

otherwise OpenCL implementation is used. For the former (i.e.

locally run server) the user has an option to run in OpenCL

also. However, our OpenGL implementation runs faster. Front-

to-back ray casting is implemented using a two-pass rendering,

where the first pass computes the ray exit points in the volume,

and the second pass executes the actual front-to-back ray

casting and rendering. The voxel gradients of the volume are

used as the normal for shade computation using a Phong

lighting model.

B. Web-based Client-Server architecture (see Fig. 2)

We implement a web-based client to make our system

accessible from a wide variety of platforms without any setup

requirement. The client and server connect over WebSockets

[6]. Websockets are chosen due to their full-duplex capabilities

on a single socket connection. Although in our implementation,

clients trigger most of the actions in the server, full-duplex

communication is required as for instance when preprocessing

is completed, server needs to send a message to the appropriate

client. Our client handles display and interaction with the

volume and interactive transfer function creation.

Requests initiated by the client include load new file

request, transfer function update, and camera update, among

others. The server renders the volume and sends back the

rendered frame to the client through the WebSocket

connection[6].

WebSocket server side is developed using Boost Library.

The server runs n+1 threads running in parallel, where n is the

number of simultaneous client interfaces connected to the

server. The first thread is used for listening for socket requests

and creating a new thread for each connection request. Each

successive thread created, handles the rendering requests of the

client on the other end of the connection, and transmits the

rendered frame to the client.

Client requests are encoded in JSON format. Every render

request has an action tag; so the server knows what to perform

when it parses the request. There is a queue shared between the

listening thread and each client thread. When the listening

thread receives the request in JSON format, it parses the

request, and puts the appropriate action request in the

appropriate shared queue. Client threads, on the other hand,

polls the shared queue, and when there is an action request

pushed to the queue, the client thread performs a rendering

request and transmits back the rendered frame to the

appropriate client through the open connection. The rendered

frames are transmitted to the clients as binary images.

D3 is used for implementing an interactive Transfer

Function editor on the web page (Fig. 1b). The Transfer

Function is composed of an array of anchor points, where each

anchor point has x, y, r, g, and b float values. x represents gray

scale voxel value, y represents transparency of the anchor

point, and r, g, and b refer to red, green and blue color

components of the mapped color value. The user can

interactively add/delete/modify the opacity and the color of an

anchor point. The user is allowed to save and retrieve the

transfer function.

Fig. 2. Client-Server Architecture

IV. RESULTS AND DISCUSSION

This system is developed as a proof of concept for an

interactive and portable client-server architecture and an out-

of-core volume ray casting application. Performance is given

for a system with Intel Core i7-4770K- GeForce GTX 780 with

15.6GB Memory. The server is implemented in C++. We have

experimented with a variety of volume data including Visible

Human Project’s Female Dataset. Figure 3 shows some

renderings of the Visible Human Project’s Female Dataset [7],

whose size is 2048×1216×5185 and High Resolution Brain

CT data (courtesy NCI), whose size is

1588×1588×1173.Visible Human Project’s Female dataset

required slice-by-slice cleaning before applying our regular

preprocessing.

Fig. 3. Client Screenshots

In our current implementation, volume data for both the

volumes hold 8 bits per voxel. When client makes a “load a

new volume” request, if the volume is not already

preprocessed, then the preprocessing is automatically

triggered. When preprocessing is completed, server sends

message to the requesting client about completion of

preprocessing stage. The bricks are stored sequentially in a

file. At the time of rendering, when a brick at a certain level is

required, its data is fetched from the appropriate position.

Since spatially closer bricks are more likely to have similar

projected area and belong to the same octree level, they appear

adjacent to each other, and hence fetching them using Memory

Mapped File (available in Boost library) is fast. We will

explore maintaining a cache of bricks in memory as an

improvement option for our system when we port the system

to a decent server.

We obtain acceptable visual quality, which is highly

dependent on the transfer function, at an average frame rate of

10Hz. Although our prototype system is missing many

possible optimizations, the overall performance is promising.

We are planning additional optimizations for future work.

V. CONCLUSION AND FUTURE WORK

We have presented an out-of-core volume ray-casting

algorithm with a web-based interface and a client-server

architecture. Our system can render large volumes and display

through a browser to allow users with mobile devices.

 Compute intensive volume processing and out-of-core

volume ray casting are performed on a remote server, while the

interaction, transfer function design and display of the image

rendered by the server is done through a browser running on a

client device. The initial implementation results are promising,

and interactive visualization is achieved on client devices.

Management of bricks on the GPU is a crucial part of our

algorithm. Efficient mapping of the available brick slots in the

GPU for the adaptively-computed, view-dependent brick

candidates is crucial to the efficiency of the out-of-core

algorithm. This can be posed as a classic divisible Knapsack

Problem, where the weights of the items (bricks) are the same,

but there is high benefit to having all the front bricks at the

required resolution. Furthermore, we hope to take advantage of

frame-to-frame coherence, and reduce the CPU to GPU

transfers required for each frame.

ACKNOWLEDGMENT

This work is fully supported by the Frederick National

Laboratory for Cancer Research.

REFERENCES

[1] J. Beyer, M. Hadwiger, and H. Pfister. "A survey of GPU-

based large-scale volume visualization," Proceedings of

Eurographics Conference on Visualization, 2014.

[2] K. Engel, M. Hadwiger, J. Kniss, C. Rezek-Salama, and

D. Weiskopf, Real-time Volume Graphics, A K Peters,

2006.

[3] T. Fogal, A Schiewe, and J. Kruger, "An analysis of

scalable GPU-based ray-guided volume rendering,"

Proceedings of IEEE Large-Scale Data Analysis and

Visualization (LDAV), 2013.

[4] E. Gobbetti, F. Marton, and I. Guiti, “A single-Pass GPU

ray casting framework for interactive out-of-core

rendering of massive volumetric datasets,” The Visual

Computer, vol. 24(7). pp. 787–806, 2008.

[5] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann,

“GigaVoxels: ray-guided streaming for efficient and

detailed voxel rendering,” Proceedings of Interactive 3D

graphics and games (ACM I3D '09), pp 15-22, 2009, New

York, NY, USA.

[6] "What Is WebSocket?" WebSocket.org. Web. 8 May

2015.

[7] "The National Library of Medicine's Visible Human

Project." U.S National Library of Medicine. U.S. National

Library of Medicine, n.d. Web. 01 Sept. 2015.

<http://www.nlm.nih.gov/research/visible/visible_human.

html>.

[8] "Vaa3D." Vaa3D. N.p., n.d. Web. 01 Sept. 2015.

<http://home.penglab.com/proj/vaa3d/home/index.html>

a,b,c) Rendering of Visible Human Project Female Dataset[7]

d) Client interface showing Transfer function for Brain Data set (L) and
rendering (R).

e,f) Renderings from Brain Data Set: with (L) and without (R)

hierarchical brick outline.

